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Birkhoff signature change: a criterion for the
instability of chaotic resonance

By F. A. McRoBIE

Centre for Nonlinear Dynamics and its Applications, Civil Engineering Building,
University College London, Gower Sireet, London WCIE 6BT, UK.

For periodically forced nonlinear oscillators permitting escape from a potential well
a relation is observed between two well-known phenomena, the period-doubling
cascade leading to the chaotic escape of the resonant attractor and the complex
dynamics associated with the creation of a structurally unstable homoclinic orbit.
The particular homoclinic orbit is identified as that created at the initial change of
the period one Birkhoff signature of the invariant manifolds of the hilltop saddle. The
primary resonant attractor may thus be viewed as the period one simple Newhouse
orbit. Significant subharmonic and superharmonic escape events may likewise be
associated with nearby Birkhoff signature changes. Significant information about
the global dynamics may thus be obtained with little numerical effort by inspection
of the signatures of the invariant manifolds of the hilltop saddle.

THE ROYAL
SOCIETY

1. Introduction

PHILOSOPHICAL
TRANSACTIONS
OF

The behaviour of many engineering dynamical systems can be formulated in terms
of motion in a potential well and of particular significance are those systems where
failure corresponds to escape from the well. For example, a dynamical system may
be represented by an equation of the form

E+c(x, ) +g(x) = F(1),

where x is the displacement, c¢(x,#) a damping term, dissipative such that
sgn|c(x, #)] = sgn[2], g(x) is the nonlinear displacement-dependent restoring force and
F(t) is an applied periodic excitation with zero mean. This has a corresponding
potential function ¥ (x) of slope d7”/dx = g(x). For an important class of systems the
potential function has a form broadly described by figure 1 such that under certain
forcing conditions the system may escape from the well to arbitrarily large
displacement beyond the potential maximum. For small amplitudes of dynamic
forcing the behaviour of a physical system starting from the static equilibrium at the
bottom of the well may be adequately modelled by linearity assumptions
supplemented with perturbation techniques. Under increasing forcing the amplitude
of the motions can grow such that the system explores regions of the well where the
assumptions of linearity are less applicable and familiar nonlinear phenomena such
as coexistent solutions, jumps to resonance and period-doubling cascades may be
encountered. Some typical frequency curves under increasing forcing are provided in
figure 2a—d (see also McRobie & Thompson (1990), for example). One typical feature
is a zone of resonant hysteresis (figure 2b), where stable resonant and non-resonant
period one motions are separated by a directly unstable saddle and the zone is
bounded by saddle-node bifurcation arcs A and B where the intervening saddle
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potential
V(x)

N

Figure 1. Archetypal potential well for a simple nonlinear engineering oscillator permitting
escape over a potential maximum under periodic forcing.

forcing amplitude

resonant

hysteresis
| - ‘\4’ b

response

frequency ratio

Figure 2. (a)-(d) Typical frequency-response curves under increasing forcing amplitudes for an
oscillator having a potential well of the form shown in figure 1. (e) is the corresponding bifurcation
diagram at constant damping. Arcs A and B correspond to saddle-node bifurcations, C is the first
period-doubling (or flip) bifurcation of the resonant attractor, and E is the chaotic escape event
where the resulting chaotic attractor loses stability. Arc M corresponds to the initial homoclinic
tangency of the invariant manifolds of the hilltop saddle cycle. Subharmonic and superharmonic
activity is omitted for clarity.

collides with one of the attractors. At higher forcing values (figure 2¢) the resonant
attractor can undergo period-doubling cascades (starting on arc C) leading to a
numerically observed chaotic attractor which can be subsequently destroyed at a
chaotic escape event (arc K). This is a global bifurcation involving collision of the
attractor with the global basin boundary.

Knowledge of the locus of the bifurcations in parameter space (figure 2e) provides
information about how a physical system will evolve as parameters are varied. Of
particular significance is the chaotic escape arc E, the locus of those parameter values
where the resonant attractor, now chaotic, is destroyed, since any system following
that attractor path is then liable to escape.

Phil. Trans. R. Soc. Lond. A (1992)
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2. Preliminaries

Analysis of simple periodically forced nonlinear oscillators is most suitably
approached using the method Poincaré sections (see, for example, Thompson &
Stewart 1986). The velocity and displacement of a system are stroboscopically
sampled at successive periods of the applied forcing. Under one cycle of the applied
forcing, the study of the three-dimensional flow reduces to analysis of the action of
a two-dimensional diffeomorphism mapping the Poincaré plane (x, #) onto itself.

For simple-sided escape systems such as typified by the potential of figure 1, there
generally exists over wide parameter ranges an unstable periodic solution referred to
as the hilltop saddle cycle which oscillates about the local potential maximum. It is
demonstrated in McRobie & Thompson (1992a), for example, how the invariant
manifolds of this solution are closely related to the location of attractors, saddles,
basins of attraction, and in general all invariant sets of the diffeomorphism.

A homoclinic orbit is one that is asymptotic in both forward and reverse time to
some given periodic orbit. It is well known that the existence of such homoclinic
orbits ‘implies chaos’, in that the Smale—Birkhoff homoclinic theorem (see, for
example, Guckenheimer & Holmes 1983) implies the existence of horseshoes in the
vieinity of any homoclinic orbit. In the analysis of simple nonlinear oscillators the
proof of ‘chaos’ is often simply established by use of Melnikov’s method to prove the
existence of homoclinic orbits. However, such approaches often have little relevance
to the dominant features of the dynamics (such as the chaotic escape of the resonant
attractor). The intention of this paper is to highlight an observed relation between
one specific orbit (which is homoclinic to the hilltop saddle) and the primary chaotic
escape event.

3. Chaotic escape

The chaotic escape of the primary resonant attractor in simple periodically forced
nonlinear oscillators is an event variously referred to as a blue-sky catastrophe (see,
for example, Abraham & Stewart 1986), a chaotic saddle catastrophe (Stewart 1987)
or a boundary crisis (Grebogi et al. 1983). Figure 3 is a typical Poincaré section taken
from a system near such a crisis, showing a chaotic attractor close to touching a
fractal basin boundary. Historically a great deal of theoretical and numerical
attention has been focused on these phenomena (see, for example, Stewart & Ueda
1991; Ueda et al. 1990; Kleczka et al. 1989), such that the sequence of events
observed on passage through such a crisis can be described in great detail. For
example, in Thompson (1989) it is described how the period-doubling cascade
emanating from the resonant attractor leads to a chaotic attractor which
subsequently collides with a periodic, directly unstable saddle (referred to as the
destroyer) which is contained in the global basin boundary. Coincident with this loss
of stability there are tangencies in the invariant manifolds of the destroyer and other
saddles in the chaotic attractor.

Despite the availability of detailed descriptions of the phenomenon, various
awkward factors remain.

1. Most of the important results have yet to be rigorously established and many
features of such descriptions are at the level of numerical observation, rather than
mathematical surety. For example, it does not yet appear to be proven whether or
not the observed ‘chaotic’ attractor is indeed truly ‘chaotic’ (although Benedicks &
Carlesson (1991) have certain related results in this direction).

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

560 F. A. McRobie

\

a
PN

THE ROYAL A

Y \
AL

SOCIETY

e

PHILOSOPHICAL
TRANSACTIONS
OF

N Y
A \%; LY
» A VRRR N
-3 TENR i

Figure 3. Cell maps of a chaotic attractor close to a boundary crisis. The system is the escape
equation of Thompson (1989), with parameters # = 0.1, F = 0.1089, » = 0.85. In the upper figure,
the dark regions correspond to the basin of attraction in the vicinity of the well. The lower figure
is a detail, highlighting the location of the resonant two-band chaotic attractor.

2. Most of the existing knowledge is too detailed to be of any engineering
relevance. Identification of the destroyer saddle and the analysis of its complex
invariant manifold structures can require care and effort even in the clean
environment of a computer simulation. Very few physical engineering applications
would possess the precision of control and lack of noise necessary to make such
detailed analysis sensible.

3. Another problem may be that such events, being global bifurcations, are
generally inaccessible to perturbative techniques. This is only a problem to those
analysts who prefer such approaches. Szemplinska-Stupnicka (1988) has applied
harmonic balance techniques to successfully approximate the occurrence of the
nearby local bifurcation, namely the first flip of the resonant attractor. However,
global perturbative methods similar to Melnikov’s method, but aimed directly at the
crisis itself, are less forthcoming since the orbits involved in such escape events
typically traverse many energy levels of the underlying hamiltonian system.

It is in regard to these problems that this paper will propose a very general
criterion associated with chaotic escape. This criterion will not depend on knowledge
of the (as-yet not fully understood) fine details of the location and nature of the
destroyer and its manifolds. The criterion will not be some algebraic expression but
will be based on a simple observation of the topological configuration of certain
manifolds. This configuration may be readily constructed and followed numerically
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response, x

Figure 4. (a), (b), (d) are schematic illustrations of the invariant manifolds of the hilltop saddle D
plotted on the Poincaré plane (x,4) as parameters are varied through the initial homoclinic
tangency (b). (¢) shows the corresponding time-histories of the hilltop saddle cycle and the
structurally unstable homoclinic orbit created at the tangency of (b). The triangular, circular and
square markers denote Poincaré points of particular orbits.

using suitable algorithms (see, for example, Alexander 1989 ; Kawakami 1981). As its
basis will be topological rather than being a perturbation of a nearby linear or
hamiltonian system, the criterion will moreover not be restricted to the algebraically
simple low-order polynomial functions that are necessary for perturbation theory,
yet which are rarely encountered in engineering.

4. Homoclinic tangencies

In a dissipative system at small forcing amplitudes, the hilltop saddle cycle
possesses no homoclinic orbit (see figure 4a). As the forcing amplitude is gradually
increased the first homoclinic orbit is created at an event referred to as a homoclinic
tangency (figure 4b). The stable and unstable manifolds of the hilltop saddle cycle
touch at a (countably) infinite number of points, each such point being a Poincaré
point of a single homoclinic orbit (see figure 4c¢) that starts arbitrarily close to the
hilltop saddle, undergoes an excursion across the well and then reconverges back to
the hilltop saddle. This orbit is structurally unstable, in that perturbations will
typically either remove all homoclinicity or create two structurally stable (trans-
verse) homoclinic orbits (figure 4d). This initial tangency is the one detected by
Melnikov’s perturbation method, which at low damping and forcing values,
accurately predicts the parameter location of this event (Thompson 1989). However,
this tangency alone has little to do with the chaotic escape of the resonant attractor
or any other behaviour of the primary harmonic motions. At low damping values and
forcing frequencies greater than resonance the ‘chaos’ associated with passage
through this tangency consists of Smale horseshoes and associated cascades of
subharmonic saddle-node and flip bifurcations which are typically confined to the
extreme outer regions of the global basin, at energies typical of the hilltop saddle
rather than the period one attractors. Any system following the period one attractor
paths is energetically distanced from these regions and typically retains a simple
period one motion throughout the tangency. At forcing frequencies above resonance,
it is seen in figure 2e how the first flip (arc C) of the resonant attractor and the chaotic
escape arc K are both typically well-distanced from the initial tangency (arc M). The
primary chaotic escape event is thus clearly not simply a feature of passage through
the initial homoclinic tangency.

Phal. Trans. R. Soc. Lond. A (1992)
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Figure 5. Examples of the Birkhoff signatures of a schematic homoclinic tangle (). (b), (¢), (d) show
the period one, two and three signatures respectively. The period one and two signatures have yet
to undergo their first changes, whereas the period three signature has already undergone at least
two changes since the initial homoclinic tangency.

It will be shown, however, that there is another important homoclinic tangency in
the manifolds of the hilltop saddle to which the chaotic escape event is more closely
related.

5. Birkhoff signatures

As the control parameters are varied beyond the initial tangency, the stable and
unstable manifolds of the hilltop saddle form a homoclinic tangle. Both curves
become extremely convoluted and the global basin boundary (which is closely
associated with the stable manifcld) possesses a fractal structure. Under subsequent
parameter ramping, the manifolds undergo a complex evolution involving infinite
sequences of inner homoclinic tangencies with associated subharmonic cascades. This
activity, initially in the outer regions of the global basin, progressively intrudes into
the inner regions, a process referred to as global basin erosion by incursion of a fractal
basin boundary.

In McRobie & Thompson (1991) it is described how the trellises formed by the
homoclinically tangled invariant manifolds may be addressed by lobe dynamic
techniques to provide a general understanding of the dynamical processes at work in
such tangles. The structurally unstable homoclinic orbit created at the initial
tangency degenerates into two structurally stable homoclinic orbits referred to as
primary intersection points (or pips). A pip has the property that the stable and
unstable manifold segments connecting the pip to the saddle do not intersect, other
than at the pip and the saddle. Throughout the subsequent complex evolution of the
manifolds the pips retain this property, and this simple invariance may be used to
dissect the convoluted tangle into more manageable regions, referred to as lobes,
whose fate under successive iterations of the map may be easily understood. The
reader is referred to McRobie & Thompson (1991) for further details. In words, we
select one of the two structurally stable homoclinic orbits emanating from the initial
tangency, and select any of its Poincaré points from the infinite number present. The
invariant manifold segments that connect this chosen pip to its nth image circum-
scribe and define the lobes, and the topological configuration of the lobes defines the
period n Birkhoff signature. Some illustratory signatures are given in figure 5.

The period one Birkhoff signature is thus defined by the configuration of the lobes

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 6. Schematic description of the first change of the period one Birkhoff signature. (@) shows
homoclinically tangled invariant manifold structures and the associated period one Birkhoff
signature (b) which has not yet undergone its first change. (c) shows the manifold structures after
parameters have been varied to take the tangle marginally beyond its first period one Birkhoff
signature change. This occurs when the lobe Y, first intersects the lobe @, this intersection creating
a new homoclinic orbit at the tangency.

circumscribed by the invariant manifold segments that connect the pip to its image.
On first passing through the initial homoclinic tangency, the period one signature
necessarily has the form shown in figure 6a, with the two lobes, labelled @, and Y7,
necessarily disjoint. The first change in this signature occurs when the two lobes first
intersect (see figure 6b), this corresponding to the passage through a particular inner
homoclinic tangency.

The main result reported in this paper is that this first change in the period one
Birkhoff signature is observed to occur close to (and shortly after) the chaotic escape
of the primary resonant attractor. Some associated observations on the significance
of such homoclinic tangencies (referred to as ‘bifurcations of doubly asymptotic
motions’) have been previously highlighted in the work of Kawakami and co-workers
(see, for example, Kawakami 1981) in investigations of nonlinear electronic
engineering oscillators.

6. Numerical evidence

Two simple nonlinear systems having single-sided potential wells of the general
form of figure 1 are considered; the ‘generic’ escape equation introduced by
Thompson (1989):

(a) i+ pi+x—a® = Fsin (wt)
and a specific equation that arose in the study of a particular structural vibration
problem involving both geometric and material stiffness nonlinearities:
(b) mi + cx + K(x) x = F +Fcos (w,t+ @),
K <
where K= { ” 2 Fer
Koexp(_a’(lxl_‘xcr))a le > Xoy

Bifurcation diagrams for the two systems are given in figure 7a, b. Not only are the
potential wells of the two systems mathematically dissimilar in formulation, but the

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 7. Bifurcation diagrams for the two equations of §6. (a) is for f= 0.1, (b) is for m =1,
c=002 K,=1, 2, =1, F, =095, F,/F,=16. Both diagrams exhibit: the cusp P where the
saddle-node bifurcation arcs A and B meet; the arc C of the first period-doubling bifurcation above
the initial homoclinic tangency arc M; slightly above the arc C is the chaotic escape arc E where
the chaotic attractor formed by the cascade starting at C loses stability at a crisis. In both systems
the arc H, the locus of the first change in the period one Birkhoff signature, is seen to lie near to
and slightly above the crisis are E. The approximate location of some of the superharmonic and
subharmonic resonances are shown at S and N respectively, where similar cascade/crisis/signature
change phenomena are observed.

parameter sets underlying the two bifurcation diagrams are also substantially
dissimilar. There is a factor of five difference in the damping ratios, and the ordinate
in the bifurcation diagram of the generic system is taken as the applied forcing
amplitude, whereas for the specific system the ordinate is taken as the stiffness decay
term K = e Both ordinates if suitably non-dimensionalized would represent
increasing levels of forcing amplitude in a potential well of fixed depth. Historically
the two diagrams represent results from different research directions. The choice of
these parameter sets is thus not prearranged to exhibit similar bifurcational
phenomena. The observation that the bifurcational structures of the two systems
bear strong similarities thus provides evidence to support the assertion that generic
patterns of bifurcation are being observed. This is further to the results of Stewart
et al. (1991) and those of Lansbury & Thompson (1990) who observed such
similarities between cubic and quartic potential functions. It similarly follows that
if the association between the signature change and the final boundary crisis can be
established in both systems, it would likewise provide strong evidence that such is a
robust and general mechanism for the escape of a resonant attractor.

The bifurcation diagrams were constructed by a variety of methods of numerical
exploration, including path-following, local bifurcation-following and cell-to-cell
mapping techniques (Hsu 1987). Preliminary estimates of the location of Birkhoff
signature changes were obtained by inspection of unstable manifolds superimposed
on cell maps. These manifolds were calculated by the standard technique of locating
the hilltop saddle cycle with a simple Newton—Raphson algorithm and extrapolating
unstable manifolds by forward iteration of a ladder of starts on a fundamental
domain on the outgoing eigenvectors close to the saddle. In cases where the cell
mapping located no attractor but the hilltop saddle exists, the stable manifold was
similarly computed by backward iteration of a fundamental domain on the ingoing
eigenvectors. Detailed location of Birkhoff signature changes was achieved using a
dedicated program, similar to the general homoclinic tangency following code of

Phil. Trans. R. Soc. Lond. A (1992)
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S'-t‘arlI)lanifold

" unstable
manifold

Figure 8. Computer realisation of the invariant manifolds used in the detection of Birkhoff
signature change. The stable manifold is extrapolated to the curve atb (corresponding to C).
Construction of the unstable manifold has located an orbit that crosses to the right of atb, but
subsequently reaches atb less than one period later. Frequency is 0.85, force is 0.124.

Alexander (1989), but implemented in such a manner as to ensure that the particular
tangency being followed is indeed that of the desired Birkhoff signature change.
Broadly, the algorithm extrapolates the stable and unstable manifolds away from
the saddle to define curves (g and €, where they intersect a surface of known velocity
(either the zero velocity plane, or preferably the velocity of the hilltop saddle at that
phase). Parameters are then adjusted until an orbit in C, can first land to the right
of C, but subsequently reach C, within one period of the applied forcing. Some
ancillary computer graphics generated in the course of implementation of the
algorithm are shown in figure 8, where intersection points and tangencies are shown
using the full three-dimensional space (x, ¥, ¢), rather than restricting attention to a
single preselected Poincaré plane. Further details of the construction will appear in
McRobie & Thompson (1992a).

The parameter locations of the initial period 1 signature change computed by this
algorithm are plotted on the corresponding bifurcation diagrams in figure 7@, b. In
both systems the association between the chaotic escape arc of the resonant attractor
and the signature change is evident. In both systems under increasing ‘force’, the
chaotic escape event precedes the signature change.

7. Engineering perspective

If the applied forcing is such that the hilltop saddle cycle is substantially localized
around the crest of the potential maximum then the initial homoclinic tangency of
the manifolds of that saddle corresponds to the first occurrence of a trajectory which,
starting arbitrarily close to the hilltop saddle cycle, falls away along the outgoing
eigenvector, traverses the potential well once and then converges back to the hilltop
saddle along the ingoing eigenvector. The infinite set of homoclinic tangency points
where the stable and unstable manifolds intersect all correspond to this single orbit
(figure 4c).

The single orbit that corresponds to the initial change of the period one Birkhoff
signature is very similar (figure 9a), but having reached the far side of the well,

Phil. Trans. R. Soc. Lond. A (1992)
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invariant manifolds I‘—; signature change orbit
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Figure 9. The nature of the homoclinic orbit created at the first period one signature change. The
black squares correspond to Poincaré points of this orbit, located in (@) with respect to the
invariant manifolds on that Poincaré plane, in (b) with respect to the projection of the full orbit
onto that plane, and in (¢) with respect to a time history of the response. All curves are computed
for the equation (@) of §6 with w = 0.85, F = 0.124 and £ = 0.1, and correspond to the invariant
manifolds of figure 8.

instead of returning directly to the hilltop, the orbit makes an additional circuit
around the well (figure 956). It should be noted that although the time taken to cross
from the saddle to the far side of the well is infinite, the additional circuit around the
well must be completed within one period of the forcing.

One simple implication that may be drawn, for example, is that for a given
amplitude of forcing, if a dynamical system is at a frequency substantially higher
than resonance and at some lower frequency there exists a single orbit of the form
of figure 9¢ that can fall from the hilltop, complete the additional circuit within one
period and return to the hilltop, then as the frequency is decreased that system is
liable to escape. Such an inference is to some extent not rigorous, but the underlying
idea that global information about system stability is provided by knowledge of the
existence of a single orbit remains. From simple numerical procedures involving only
the location of the hilltop saddle and construction of sufficient length of invariant
manifold to establish the lobe configuration of the period one Birkhoff signature, it
is thus contended that significant information about the dynamic stability of
evolving systems can be obtained, without reference to the fine details of possibly
chaotic attractor structures and destroyer collisions.

8. Dynamical systems theory perspective

From the Smale-Birkhoff homoclinic theorem, the creation of transverse
homoclinic orbits by the passage through homoclinic tangencies is associated with
horseshoe formation, which in turn is associated with cascades of periodic
bifurcations to populate the invariant sets of the horseshoes. Much theoretical work
has been undertaken to establish the nature of the associated subharmonic activity
in such processes (see, for example, Gavrilov & Silnikov 1983 ; Yorke & Alligood 1983
Newhouse 1980; Patterson & Robinson 1985). In the light of such work, the
observation reported here can be to some extent understood by observing that the
passage through the period one Birkhoff signature creates a ‘period one horseshoe’
(see figure 10) which possesses two period one saddles. One of these is directly

Phil. Trans. B. Soc. Lond. A (1992)
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Figure 10. Schematic illustration of the formation of a simple horseshoe at the first change of the
period one signature. The shaded region in (z) maps under one forcing cycle to the shaded region
of (b), the intersection of these two regions is sketched in (¢), this being topologically equivalent to
the Smale horseshoe of (d). The period one inversely unstable saddle I whose existence and location
is readily anticipated by a simple horseshoe analysis of (d) corresponds to the saddle originating at
the first period-doubling of the resonant attractor C, figures 2 and 7).

unstable, and corresponds to the hilltop saddle, the other is inversely unstable and
is that which originates from the period-doubling of the resonant attractor.
Analysis of this association between horseshoes and tangencies may be taken to
arbitrary detail. In McRobie & Thompson (1992b) it is described how a general
overview of the global dynamics involving most major subharmonic and super-
harmonic bifurcational activity may be obtained by simply looking at the
sequences of higher order Birkhoff signature changes that must occur as parameters
are varied. One particular observation is that the initial change in the period =
Birkhoff signature is associated with the chaotic escape of a period n solution which
may be identified as the period » simple Newhouse orbit. In light of this and the main
result of this paper, it is interesting to identify the primary resonant attractor of such
simple nonlinear oscillators as the period one simple Newhouse orbit. In a
forthcoming paper this identification will be strengthened by the use of symbolic
dynamics to compute rotation matrices for periodic and homoclinic orbits. In
particular a precedence relation between the period-doubling cascade of the period »
simple Newhouse orbit and the initial change in the period n Birkhoff signature
change will be derived, which in the case of » = 1, is directly applicable here.

9. Summary

The familiar chaotic escape of the resonant period one attractor in a wide class of
simple nonlinear oscillators is related to the initial change in the period one Birkhoff
signature of the invariant manifolds of the hilltop saddle. This signature change
corresponds to the existence of a single orbit. The existence or otherwise of such an
orbit is readily discerned numerically and may thus be of some utility in investigating
the failure of engineering dynamical systems. Since the orbit is a structurally
unstable homoclinic curve, the chaotic escape of the resonant attractor may be better
understood when seen as a topological feature of the global dynamics. Such an
approach does not depend upon the system being close to a linear or a hamiltonian
system, not does it require the algebraically simple potential and forcing functions
that are typically necessary for manipulation by standard perturbation techniques.
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